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The role of the 0 angle occurring in the vacuum structure of gauge theories is illus- 
trated by means of a quantum mechanical example. 

The purpose of  this paper is to develop a q u a n t u m  mechanical  analog for the 
vacuum structure in gauge theories [ 1 - 4 ] ,  and to illustrate in terms of  it the role of  
the 0 angle characterizing the different  vacua. 

1 d2/d_2 It is well known  ** that  the self-adjointness of  the operator  - ~ q in the inter- 
val 0 ~< q ~< 27r is compat ible  with a n u m b e r  of  bounda ry  condi t ions,  in particular 
with the quasi-periodic condi t ions  

, (2 r r )  = e - i °  qJ(O), 

q/(27r) = e - i °  ~ ' (0 ) .  

The Schr6dinger equa t ion  corresponding to this operator has e igenfunct ions  

1 ei(m - o/:~r)q ( l a )  ~'~(q)  = - ~ u  

and eigenvalues 

The funct ions  ( l a )  form a suitable basis for the expansion of quasi-periodic funct ions  
satisfying 

ff(q + 270 = e - io qj(q) ,  _~o < q < ~ (2) 

* Work supported in part by the Brazilian Research Council and the Kernforschungsanlage 
Jiilich, Germany 

** See for instance refs. [5] for a discussion of a closely related problem. 
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The significance of condition (2) is best seen by considering the variable q as param- 
etrizing the points of  a circle. A priori, the value 0 4 :0  is perfectly consistent with 
the basic principles of  quantum mechanics on a circle. The situation is quite different 
if the circle is taken as a restriction of  Euclidean space, as in the case of  the rigid 
rotor, where the simple connectedness of  the underlying manifold requires 0 = 0. 
However, if we were living in a toroid, we would see no basic reason for choosing 
0 = 0, in which case 0 plays the role of  a cosmological constant. In this respect we 
disagree with the philosophy presented in ref. [6]. 

The analogy between the angle 0 introduced above and the angle characterizing 
the vacuum of  gauge theories becomes explicit by considering the Green function 
corresponding to the eigenfunctions and eigenvalues (1) in the Feynman path integral 
representation, which, as we shall demonstrate next, is given by 

q( t) = q + 2mr t 
G(q, t) = ~ e +in° I D[q'] exp[ i  f dt'½O'2(t')] . (3) 

n = -  ~o q ( O )  = 0 0 

Each of  the functional integrals participating in eq. (3) involves paths from inequiv- 
alent topological classes. Already, before evaluation of the right-hand side, we see 
the quasi-periodic property of  G(q, t): 

G(q + 2rr, t) = e -i° G(q, t ) .  (4) 

The functional integral is easily performed and leads to 

e o  

1 G e inO e (i/2t)(q + 2nrr)2 (5) G(q, t ) = ~  

In order to convince ourself that this is the correct Green function, we develop (5) 
in terms of  the basis (la):  

o o  

G(q, t)= ~ am(t) ~m(q) . 
n=--~ 

Tile coefficients am(t ) are computed to be 

1 ? dq e_i( m _ o/2~r)q eiq2/2t, 
am(t) 1 

so that 

(6) 

o o  

G(q, t) : (qt 100) : 
m = _ o o  

t~m(q) ~n(O) e -(i/2)(m - 0/2~)2t 

In complete analogy to what has been done in gauge theories [2], we may rewrite 
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expression (3) in terms of an effective Langrangian 

£eff(//, q) = ½//: + 0 # (7) 
27r ' 

leading to 

q(0 = q t 
(qt iO0)=e -i(O/27r)q f D[q'] exp(i f £eff(q' , i l ' )dt ') ,  (8) 

q(o) = o o 

where the q-dependent normalization constant results from the fact that this £eff 
leads to a gauge transform of the free Hamiltonian. In expression (8) the func- 
tional integral is performed over paths going around the circle an arbitrary number 
of times. Although the 0 dependence does not affect the classical equations of mo- 
tion, it evidently plays an important role in (8) to fix the quantum mechanical 
boundary conditions. In particular, for 0 :~ 0 we have a P, T violation, again in com- 
plete analogy to the situation discussed by 't Hooft [2]. 

By considering the limit of the propagator for large imaginary times, we obtain, 
following ref. [7], Feynman path representations for both the ground state wave 
function and the generating functional for Euclidean correlation functions 

Z[Jl =fD[q] exp( - f  (~:efe +Jq) dr) 

having the same topological interpretation as the corresponding functionals consid- 
ered in gauge field theories [2,4]. 

On the other hand, the field theoretical analog of the quantum mechanical propa- 
gator will be given for such theories, in the gauge A = 0, by 

(A2, t~ LA~,t~>= ~ e in° f DIAl e×p(/f ~d4y), (9) 
n = - - o o  

A 1 t l  

where g7 'A 2 stands for the gauge transform of A2 under a gauge transformation 
carrying winding number n [3]. As in (3), the above propagator possesses the quasi- 
periodic property 

(g l  "A2, t2 [Al, t l )  = e -i° (A2, t2 IA1, t l ) ,  

implying in turn the quasi-periodicity of the ground state functional [3], 

~o(gl "A) = T[gl] Co(A) = e -i° t~o(A), (10) 

where T[gl] is the unitary operator implementing gauge transformations. As in the 
case of the circle, this means that the wave function evaluated at physically equiv- 
alent points in configuration space may differ by a phase. 
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One particular field theoretical example in which proper ty  (10) is realized is the 

Schwinger model [8]. It is known [9] that the gauge-invariant observables in this model 
can be entirely expressed in terms of  a free massive pseudoscalar field ~(x)  of  mass 
e/,/-zr, and an operator o carrying chirality 2. On the physical subspace, o is a con- 
stant unitary operator  which generates an infinite number of  vacua when applied to 
the original vacuum of  the theory: 

In) = o n IO). (1 1) 

The irreducible representation of  the observables is obtained by considering the 0 
v a c u u m  

oo 

10)= ~ e in° ln) ,  (12) 
n ~ _ o o  

which corresponds [4] to the different weighting of  the topologically inequivalent 
contributions in expression (9). It has been shown [10] that o can be related to the 
operator implementing gauge transformations g l  carrying winding number one * 

T[g~l] = o n , on the physical subspace , (13a) 

with 

gl  = elA(x) , A( x l  = oo) _ A(x 1 = oo) = 2zr. (13b) 

Eq, (13) means that  on the physical subspace T does not  depend on the particular 
gauge function but  only on the topological class. Except for the possibility discussed 
in ref. [10] of  exhibiting a finer vacuum structure related to half-winding gauge 
transformations, it would be redundant to consider gauge transformation with arbi- 
trary winding number,  since the corresponding spurions do not participate in 
Schwinger's solution. From eqs. (1 I)  and (12) we have 

T[gl]  10) = e -iO [0),  (14) 

which expresses the quasi-periodicity proper ty  (10) for the Schwinger model. The 
properties we have just summarized imply the following expression for the vacuum- 
state functional, which we expr~s  in terms of  spacial electric field configurations 
(up to a propor t ional i ty  factor, Z) and a gauge degree of  freedom (7): 

- ( iO ~' 1) dz ' )  
¢ 0 [ z , , 7 ]  = exp(-f2(x )K(x -y')20' )dx'dy exp - - ~  f 31.(z , 

_ a o  

(15a) 
• At this point we disagree with Nakanishi's paper [ 11 ]. The solution he proposes, eq. (2.7), 

leads to a physical space corresponding to a particular choice of the 0 vacuum, in his notation 
0 = arg(u lug). In such an irreducible representation it is not surprising that he misses the cor- 
rect relation (13). The spurions introduced by him are indeed spurious since they are not the 
variable conjugate to 0. 
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where 

K(z) = -~n f + --eikzdk'Tr (15b) 
_ _ o o  

In obtaining expression (15) we have used the fact that the free field can be decom- 

posed into a collection of independent harmonic oscillators. The r/dependence fol- 
lows from properties (13) and (14) which imply that gauge transformations carrying 
zero winding (A(x i = +oo) = A(x 1 = _oo)) leave the physical states invariant, whereas 

those carrying winding n transform the state by a phase. The right-hand side of eq. 
(15a) provides a concrete realization of the quasi-periodicity (10) for the Schwinger 

model. 

One of us (J.A.S.) wishes to thank L.C. Gomez for a useful discussion. Tile other 

author is grateful to PUC and the CNPq-KFA JiJlich scientific exchange program for 
making this collaboration possible, and to L.V. Belvedere for a useful discussion. 

Note added in proof 

After the completion of our work some related papers [ 12] were brought to our 
attention. 
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